Muscle loss during short-term fasting
This is an issue that often comes up in online health discussions, and was the topic of a conversation I had the other day with a friend about some of the benefits of intermittent fasting. Please note that the term "fast" is used in this post as synonymous with a period of time in which only water is consumed. If one consumes, say, a carrot during a 10 h "fast", then that is not really a fast.
Can the benefits of intermittent fasting be achieved without muscle loss? The answer is “yes”, to the best of my knowledge.
Even if you are not interested in bulking up or becoming a bodybuilder, you probably want to keep the muscle tissue you have. As a norm, it is generally easier to lose muscle than it is to gain it. Fat, on the other hand, can be gained very easily. This is today, in modern urban societies. Among our hominid ancestors, this situation was probably reversed to a certain extent.
Body fat percentage is positively correlated with measures of inflammation markers and the occurrence of various health problems. Since muscle tissue makes up lean body mass, which excludes fat, it is by definition negatively correlated with inflammation markers and health problems.
As muscle mass increases, so does health; as long as the increase in muscle mass is “natural” – i.e., it comes naturally for the individual, ideally without anything other than unprocessed food. Unnatural muscle gain may increase health temporarily, but problems eventually happen. For example, several years ago a colleague of mine gained a great deal of muscle mass by taking steroids. A few months later he had a spinal disc herniation while lifting, and never fully recovered. About a year ago he was obese, diabetic, and considering bariatric surgery.
If you are a natural lightweight, your frame may not adapt fast enough make you a natural heavyweight. And there is nothing wrong with being a natural lightweight.
In short-term fasts (e.g., up to 24 h) one can indeed lose some muscle mass as the body produces glucose using amino acids in muscle tissue through a process known as gluconeogenesis. In this sense, muscle is the body’s main reserve of glucose. Adipocytes are the body’s main reserves of fat.
Muscle loss is not pronounced in short-term fasts though. It occurs after the body’s glycogen reserves, particularly those in the liver, are significantly depleted. This often starts happening 8 to 12 hours into the fast, for people who do not fast regularly, and depending on how depleted their liver glycogen (liver "sugar") reserves are when they start fasting. Those who fast regularly tend to have greater reserves of liver glycogen, a form of compensatory adaptation, and could go on fasting for as much as 20 h or so before their bodies need to resort to muscle catabolism to meet the brain's hunger for glucose (often about 5 g / h).
The liver is the main store of body sugar used to supply the glucose needs of the brain. This is interesting, since skeletal muscle often stores 5 times more sugar than the liver. That muscle sugar, also stored as glycogen, is pretty much "locked". It can be tapped during intense physical exertion (e.g., sprints, weight training), and pretty much nothing else can release it. The brains of our ancestors living 200 thousand years ago needed as much glucose as ours do, but their fight-or-flight needs took precedence. Our body today is like that; we are largely adapted to life in our ancestral past.
When the body is running short on glycogen, primarily liver glycogen, it becomes increasingly reliant on fat as a source of energy, sparing muscle tissue. That is, it burns fat and certain byproducts of fat metabolism, such as ketone bodies. This benign state is known as ketosis; not to be confused with ketoacidosis, which is a pathological state. There is evidence that ketosis is a more efficient state from a metabolic perspective (see, e.g., Taubes, 2007).
Often people feel an increase in energy, cognitive ability, and stress when they fast.
The brain also runs on fat (through ketone byproducts) while in ketosis, although it still needs some glucose to function properly. That is primarily where muscle tissue comes into the picture, to provide the glucose that the brain needs to function. While glucose can also be made from fat, more specifically a lipid component called glycerol, this usually happens only during very prolonged fasting and starvation.
You do not have to consume carbohydrates at all to make up for the glycogen depletion, after you break the fast. Dietary protein will do the job, as it is used in gluconeogenesis as well. However, it has to be plenty of protein, because of the loss due to conversion to glucose. This picture is complicated a bit by one interesting fact: the body tends to use protein first to meet its caloric needs, then resorting to carbohydrates and fat. Only ethanol takes precedence over protein.
Surprising? Think about this. Many animals, including humans, have a gene (frequently called the "myostatin gene") whose key function is to prevent amino acid storage in muscle beyond a certain point. Those people who have a mutation that impairs the function of this gene tend to put on muscle very easily, have low body fat percentages, and feel a lot of energy all the time. They are also hungry all the time. This genetic mutation is very rare. Children who have it look very muscular, and tend to grow to below-average height as adults.
Dietary protein also leads to an insulin response, which is comparable to that elicited by glucose. The difference is that protein also leads to other hormonal responses that have a counterbalancing effect to insulin (e.g., secretion of glucagon), by allowing for the body's use of fat as a source of energy. Insulin, by itself, promotes fat deposition and prevents fat release at the same time.
When practicing intermittent fasting, one can increase protein synthesis by doing resistance exercise (weight training, HIT), which tips the scale toward muscle growth, and away from muscle catabolism. Having said that, doing resistance exercise while fasting is usually not a good idea.
A combination of intermittent fasting and resistance exercise may actually lead to significant muscle gain in the long term. Fasting itself promotes the secretion of hormones (e.g., growth hormone) that have anabolic effects. The following sites focus on muscle gain through intermittent fasting; the bloggers are living proof that it works.
Can the benefits of intermittent fasting be achieved without muscle loss? The answer is “yes”, to the best of my knowledge.
Even if you are not interested in bulking up or becoming a bodybuilder, you probably want to keep the muscle tissue you have. As a norm, it is generally easier to lose muscle than it is to gain it. Fat, on the other hand, can be gained very easily. This is today, in modern urban societies. Among our hominid ancestors, this situation was probably reversed to a certain extent.
Body fat percentage is positively correlated with measures of inflammation markers and the occurrence of various health problems. Since muscle tissue makes up lean body mass, which excludes fat, it is by definition negatively correlated with inflammation markers and health problems.
As muscle mass increases, so does health; as long as the increase in muscle mass is “natural” – i.e., it comes naturally for the individual, ideally without anything other than unprocessed food. Unnatural muscle gain may increase health temporarily, but problems eventually happen. For example, several years ago a colleague of mine gained a great deal of muscle mass by taking steroids. A few months later he had a spinal disc herniation while lifting, and never fully recovered. About a year ago he was obese, diabetic, and considering bariatric surgery.
If you are a natural lightweight, your frame may not adapt fast enough make you a natural heavyweight. And there is nothing wrong with being a natural lightweight.
In short-term fasts (e.g., up to 24 h) one can indeed lose some muscle mass as the body produces glucose using amino acids in muscle tissue through a process known as gluconeogenesis. In this sense, muscle is the body’s main reserve of glucose. Adipocytes are the body’s main reserves of fat.
Muscle loss is not pronounced in short-term fasts though. It occurs after the body’s glycogen reserves, particularly those in the liver, are significantly depleted. This often starts happening 8 to 12 hours into the fast, for people who do not fast regularly, and depending on how depleted their liver glycogen (liver "sugar") reserves are when they start fasting. Those who fast regularly tend to have greater reserves of liver glycogen, a form of compensatory adaptation, and could go on fasting for as much as 20 h or so before their bodies need to resort to muscle catabolism to meet the brain's hunger for glucose (often about 5 g / h).
The liver is the main store of body sugar used to supply the glucose needs of the brain. This is interesting, since skeletal muscle often stores 5 times more sugar than the liver. That muscle sugar, also stored as glycogen, is pretty much "locked". It can be tapped during intense physical exertion (e.g., sprints, weight training), and pretty much nothing else can release it. The brains of our ancestors living 200 thousand years ago needed as much glucose as ours do, but their fight-or-flight needs took precedence. Our body today is like that; we are largely adapted to life in our ancestral past.
When the body is running short on glycogen, primarily liver glycogen, it becomes increasingly reliant on fat as a source of energy, sparing muscle tissue. That is, it burns fat and certain byproducts of fat metabolism, such as ketone bodies. This benign state is known as ketosis; not to be confused with ketoacidosis, which is a pathological state. There is evidence that ketosis is a more efficient state from a metabolic perspective (see, e.g., Taubes, 2007).
Often people feel an increase in energy, cognitive ability, and stress when they fast.
The brain also runs on fat (through ketone byproducts) while in ketosis, although it still needs some glucose to function properly. That is primarily where muscle tissue comes into the picture, to provide the glucose that the brain needs to function. While glucose can also be made from fat, more specifically a lipid component called glycerol, this usually happens only during very prolonged fasting and starvation.
You do not have to consume carbohydrates at all to make up for the glycogen depletion, after you break the fast. Dietary protein will do the job, as it is used in gluconeogenesis as well. However, it has to be plenty of protein, because of the loss due to conversion to glucose. This picture is complicated a bit by one interesting fact: the body tends to use protein first to meet its caloric needs, then resorting to carbohydrates and fat. Only ethanol takes precedence over protein.
Surprising? Think about this. Many animals, including humans, have a gene (frequently called the "myostatin gene") whose key function is to prevent amino acid storage in muscle beyond a certain point. Those people who have a mutation that impairs the function of this gene tend to put on muscle very easily, have low body fat percentages, and feel a lot of energy all the time. They are also hungry all the time. This genetic mutation is very rare. Children who have it look very muscular, and tend to grow to below-average height as adults.
Dietary protein also leads to an insulin response, which is comparable to that elicited by glucose. The difference is that protein also leads to other hormonal responses that have a counterbalancing effect to insulin (e.g., secretion of glucagon), by allowing for the body's use of fat as a source of energy. Insulin, by itself, promotes fat deposition and prevents fat release at the same time.
When practicing intermittent fasting, one can increase protein synthesis by doing resistance exercise (weight training, HIT), which tips the scale toward muscle growth, and away from muscle catabolism. Having said that, doing resistance exercise while fasting is usually not a good idea.
A combination of intermittent fasting and resistance exercise may actually lead to significant muscle gain in the long term. Fasting itself promotes the secretion of hormones (e.g., growth hormone) that have anabolic effects. The following sites focus on muscle gain through intermittent fasting; the bloggers are living proof that it works.
http://leangains.com/
Muscle catabolism happens all the time, even in the absence of fasting. As with many tissues in the body (e.g., bones), muscle is continuously synthesized and degraded. Muscle tissue grows when that balance is tipped toward synthesis, and is lost otherwise.
Muscle will atrophy (i.e., be degraded) if not used, even if you are not fasting. In fact, you can eat a lot of protein and carbohydrates and still lose muscle. Just note what happens when an arm or a leg is immobilized in a cast for a long period of time.
Short-term fasting is healthy, probably because it happened frequently enough among our hominid ancestors to lead to selective pressures for metabolic and physiological solutions. Consequently, our body is designed to function well while fasting, and triggering those mechanisms correctly may promote overall health.
The relationship between fasting and health likely follows a nonlinear pattern, possibly an inverted U-curve pattern. It brings about benefits up until a point, after which some negative effects ensue.
Long-term fasting may cause severe heart problems, and eventually death, as the heart muscle is used by the body to produce glucose. Here the brain has precedence over the heart, so to speak.
Voluntary, and in some cases forced, short-term fasting was likely very common among our Stone Age ancestors; and consumption of large amounts of high glycemic index carbohydrates very uncommon (Boaz & Almquist, 2001).
References:
Boaz, N.T., & Almquist, A.J. (2001). Biological anthropology: A synthetic approach to human evolution.
Taubes, G. (2007). Good calories, bad calories: Challenging the conventional wisdom on diet, weight control, and disease.
Subscribe to:
Post Comments
(
Atom
)
No comments :
Post a Comment